
2020 International Smart Cities e-Forum 智慧城市國際線上論壇

Virtual Cities:

Planning & Design using VR & Genetic Algorithm

Magesh Chandramouli Associate Professor, Computer Graphics Technology, Purdue University NW Director of Programs, EDG Division, American Society of Engg. Education

Background

- Planning and managing cities increasingly complex, as the population of cities increases geometrically
- To meet the demands of the increasing population, the limited resources are subject to over exploitation
- To attain long-term sustainable development proper planning is needed
- Landuse planning involves multiple stakeholders, multiple demands or objectives must be satisfied

Virtual Planning

- 3D models provides a key component "sense of immersion"
- 3D models better enables understanding in inherent characteristics and processes
- Visualization provides an ability to better understand and interact with data

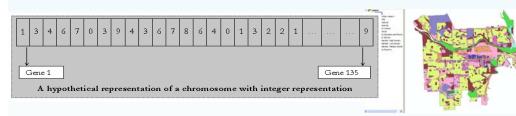
Virtual Planning

- To explore the use of visualization tools for planning and designing urban spaces
- Customize the plan of a site to the client's requirements for how they want to use the space right in front of their eyes
- Full picture we want the planners to be able to see (near) final proposed designs

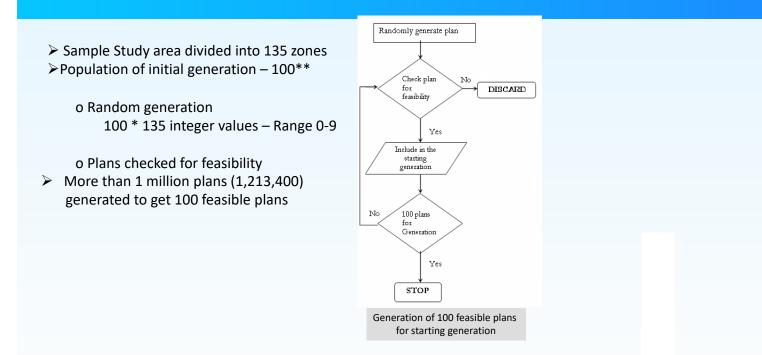
Optimization & VR

- In the following demonstration example, first Genetic Algorithm based optimization was performed and selected Pareto plans were visualized using Virtual Reality
- To design a GA-based Multiobjective Optimization procedure that can generate a set of Pareto-optimal plans for maximizing three objectives namely green space, space for public service, and housing capacity.

Genetic Algorithms (GA)


- Core of GA Selection and Variation
- Wide-ranging search procedures
- Overcome limitations of methods
 - Can handle multiobjective problems
 - Can handle very large search spaces

p(t)	; Initiate the population		
EVAL P(t)	; Evaluate the population		
	Calculate fitness using objective functions		
while (!= termination -clause)do	-clause)do ; check for satisfaction of criteria		
	Maximum number of		
	iterations reached?		
t := t+1	; proceed to subsequent generation		
Create p(t) from p(t-1)	; Generate pop using genetic operators		
Evaluate p(t)	; Again, evaluate the new population		
loop			


GA-Based Multiobjective Optimization	A
 3 GA objectives (all directly conflicting objectives) 	
o Maximization of per capita green space (PCGS), per capita space	
for public service (PCPS), and housing density (NumHU)	
	P
Computation of objective values	Reside
o PCGS and PCPS - Area / Number of residents	Resid
o NumHU = AreaResL * 50 + AreaResM * 100 + AreaResH * 185	Resider
 AreaResL, AreaResM, AreaResH: low, Med, High-density residential area 	

Landuse Type		Integer corresponding To LU_Code
	LU_Code	
Agricultural Zone	AGRI	0
Commercial Zone	COMM	1
Direct Control	DC	2
Industrial zone	IND	3
Greenspace zone	GS	4
Pubic service zone	PS	5
Residential – High Density	RESH	6
Residential – Low Density	RESL	7
Residential – Medium Density	RESM	8
Urban Reserve	UR	9

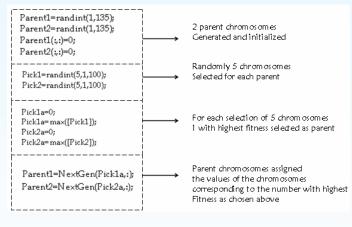
> GA constraints: Direct control zones & Urban reserves unchanged

GA: Starting generation and feasible set

GA: Fitness

- o Every plan compared with other plans in the same generation
- o Values returned by objective functions for Plan_i PCGS_i, PGPS_i, NumHU_i
- Considering two plans i and j, Plan_i is dominated by Plan_j, if PCGS_i > PCGS_i , PGPS_i > PGPS_i, NumHU_i > NumHU_i
- If min diff. b/w j & i > zero, then plan j dominates plan I min (PCGS_j - PCGS_i, PGPS_j - PGPS_i, NumHU_j - NumHU_i) > 0

$$f_{i} = \left[1 - \max_{j \neq i} \left(\min\left(\frac{\mathsf{PCGS}_{j} - \mathsf{PCGS}_{i}}{\mathsf{PCGS}_{\max} - \mathsf{PCGS}_{\min}}, - \frac{\mathsf{PCPS}_{j} - \mathsf{PCPS}_{i}}{\mathsf{PC}\mathsf{PS}_{\max} - \mathsf{PCPS}_{\min}}, - \frac{\mathsf{NumHU}_{j} - \mathsf{NumHU}_{i}}{\mathsf{NumHU}_{\max} - \mathsf{NumHU}_{\min}}\right)\right)\right]^{p}$$


o Every plan must be compared with all other plans in generation

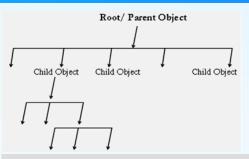
 $max(min(PCGS_j - PCGS_i, PGPS_j - PGPS_i, NumHU_j - NumHU_i)) > 0$

If > 0, then no other plan outperforms plan i in all $\underset{\neq}{objectives}$

GA: Creating Next Generation

- o Num_{ret} = Num_{ChrPop} * SelRate
- o SelRate Too small Available genes limited
 - Too large Bad traits continue to be inherited
- o Previous generation sorted and 20 plans selected (20% SelRate)

- Selection for mating
 - o 2 parents chosen for reproduction (mating)
 - o Random Pairing


VR-Based Visualization

➢ Visualization used to compare the Pareto plans

Virtual Reality

o Subset of high fitness Pareto plans selected
o 3D worlds for selected Pareto plans generated
o Plans compared to select most suitable plan for
current problem

- Hierarchical structure of scene definition
 - o Scene divided into components or objects
 - o Objects grouped to form bigger objects

Hierarchical structure for scene definition

software

- Virtual scenarios x3D/VRML
- Unity platform
- Java 3D
- Scripting
- Game engine capable of rendering through either through OpenGL or DirectX

HARDWARE

- Desktop/Laptop
 - HP Z800 machine HP graphics workstation
 - Alien ware Series or Oculus compatible laptops
- Samsung C7000 46inch 3D TV
 - proprietary glasses for binocular vision
- Razer Hydra
 - Built for gams. Recent surge in use for DIY-VR
- Microsoft Kinect
 - Gaming interface MS Xbox; but, this study uses as tracking interface

T C Vive

Hydra -Real-time Interaction

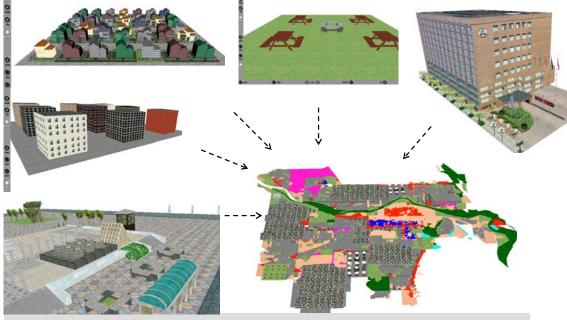
Oculus (VR Display)

Interface (MS Kinect)

OCULUS & HTC VIVE

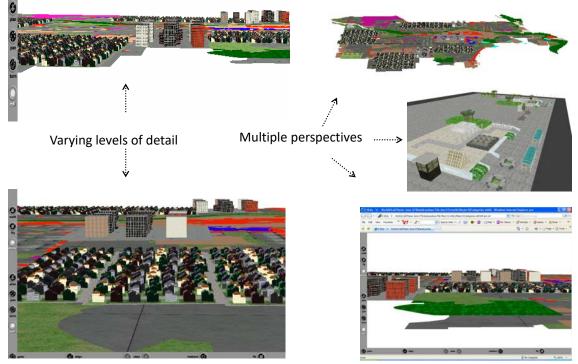
Results and Discussion

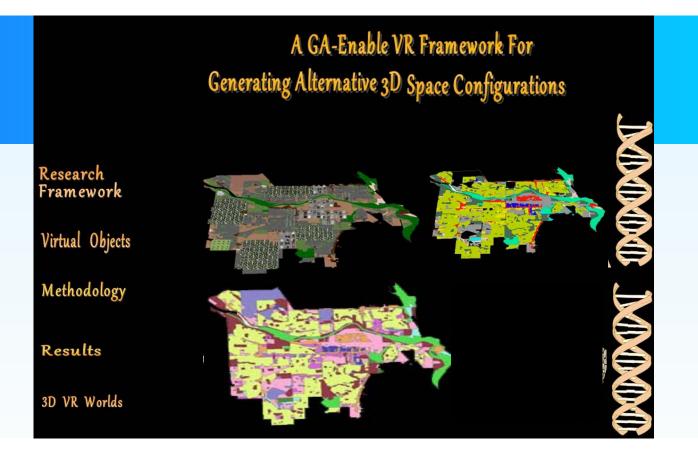
Ratio of Pareto Tournament Mutation Generation Experiments confirm that values plans size Probability size Starting : Final suggested by pioneers are correct Low o Medium tournament size 100 1:3 0.05 o Low mutation probability Medium Low 1.2.5 100 0.1 High 100 1:2 ➢ GA executed for the given landuse region 0.2 Low with following parameters 100 1:4.2 0.05 o Tournament size of 5 Medium Medium 100 1:3 0.1 o Mutation probability – 0.05 High 100 1:3 0.2 Low o GA executed for 100 generations 100 1:3 0.05 maximizing three objectives Medium High 100 1:3.25 0.1 High 1:3 100

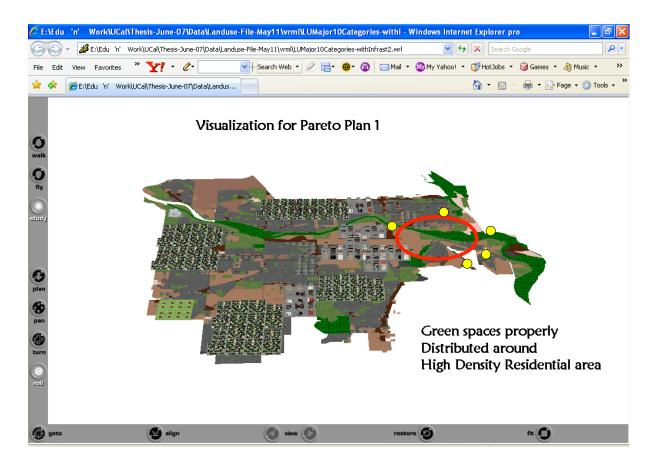

0.2

Results and Discussion

File imported from ArcScene


Results and Discussion




Various components built and integrated into the Scene

Components added to the 3D VRML world

Results and Discussion

Results and Discussion

2 Res- H and 1 Res-L are competing for meager Green space & public service

Thank You